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The paper deals with the vibration and dynamic stability of cantilevered pipes conveying fluid 

on elastic foundations. The relationship between the eigenvalue branches and corresponding 

unstable modes associated with the flutter of the pipe is thoroughly investigated. Governing 

equations of motion are derived from the extended Hamilton's principle, and a numerical 

scheme using finite element methods is applied to obtain the discretized equations. The critical 

flow velocity and stability maps of the pipe are obtained for various elastic foundation para- 

meters, mass ratios of the pipe, and structural damping coefficients. Especially critical mass 

ratios, at which the transference of the eigenvalue branches related to flutter takes place, are 

precisely determined. Finally, the flutter configuration of the pipe at the critical flow velocities 

is drawn graphically at every twelfth period to define the order of  the quasi-mode of flutter 

configuration. 
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1. Introduction 

The vibration and dynamic stability problem 

of slender pipe systems conveying internal fluid 

can be encountered in many engineering applica- 

tions. Some examples of such a system are heat 

exchange pipes, nuclear reactor fuel elements, 

thin-shell structures used as heat shields in air- 

craft engines, and certain types of valves and 
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other components in hydraulic machinery. The 

study of the dynamics of the pipe conveying 

fluid was initiated by Ashley et al.(1950) in an 

attempt to explain the vibrations observed in 

the Trans-Arabian  oil pipeline. Benjamin (1961a, 

1961b) conducted experiments of articulated pi- 

pes having two degrees-of-freedom along with 

the theoretical studies. He pointed out that the 

fluid force in pipes simply-supported at both ends 

is conservative, and the instability type is diver- 

gence, while the fluid force in clamped-free pipe 

systems is non-conservative, and the instability 

type is flutter. The flutter of  cantilevered continu- 
ous pipes conveying fluid was investigated by 

Gregory et al. theoretically (196la) and experi- 

mentally ( 196 lb) .  
In parallel with the above studies, the dyna- 
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mic stability of pipes conveying fluid on elastic 

foundations, or with additional spring supports 

or masses, has been also studied. Especially, the 

effect of an elastic foundation on the fluid-con- 

veying pipe was investigated in several studies. 

Stein et a1.(1970) included the effect of internal 

pressure in the equation of motion and introduc- 

ed a Winkler elastic foundation to study the dy- 

namic characteristics of a pipe of infinite length. 

They pointed out that the elastic foundation is 

necessary to guarantee the equilibrium of the sys- 

tem. However, Smith et a1.(1972) concluded that 

the elastic foundation did not increase the flutter 

load of a cantilevered beam on elastic founda- 

tions subjected to a follower force. Lottati et al. 

(1986) investigated the effect of an elastic foun- 

dation and of dissipative forces on the stability of 

fluid-conveying pipes. Using Galerkin's method 

to calculate eigen-frequencies, they concluded 

that the elastic foundation stiffness have a stabi- 

lizing effect for the fluid-conveying pipes. It is 

well known that the Winkler elastic foundation 

modeled as distributed springs does not increase 

the critical force, but increases the critical flow 

velocity in the problem of pipes conveying fluid. 

In addition to these studies with elastic foun- 

dations, studies on dynamic stability and vibra- 

tion of pipes conveying fluid with translational 

spring supports or lumped masses have been 

conducted. Becket (1979) examined the dynamics 

of a pipe supported by a spring. In this case, 

the system behaves essentially as a cantilevered 

pipe for a very small spring constant, and as a 

clamped-pined pipe for a very large spring con- 

stant. Sugiyama and his collaborators (1985) 

investigated the changes of instability types of 

a spring-supported horizontal pipe conveying 

fluid. In their study, they emphasized the effect 

of the spring position and the spring constant 

on the dynamic stability of the pipe through 

both experiment and theory. Later, Sugiyama and 

his colleagues (1988) investigated the combined 

effect of a spring and a concentrated mass on 

the dynamic stability of a cantilevered horizontal 

pipes conveying fluid. Paidoussis (1993) gave a 

seminar talks related to some curiosity-driven 

research in fluid structure interactions and its 

current applications. The overview of the dyna- 

mics of pipes conveying fluid is presented in the 

book by Paidoussis (1998). Impollonia et al. 

(2000) studied the effect of elastic foundations 

on divergence and flutter of an articulated pipe 

conveying fluid. Doare et a1.(2002) investigated 

local and global instability of fluid-conveying 

pipes on elastic foundations. 

Most of the above studies are related to the 

critical flow velocity and root locus of pipes con- 

veying fluid. Only a few studies have explained 

the complicated relation between the flutter mode 

shapes of cantilevered pipes conveying fluid and 

the corresponding root locus without considering 

any vibratory modes. Recently Lim et a1.(2003) 

conducted the nonlinear dynamic analysis of a 

cantilever tube conveying fluid with system iden- 

tification. 

The objective of the present paper is to show 

the transference regions of eigenvalue curves and 

the corresponding unstable modes of the fluid 

conveying cantilevered pipes on elastic founda- 

tions. It is also shown that the transference of 

the eigenvalue branch does not coincide with the 

unstable mode as it does in ordinary dynamical 

systems. 

In this paper, the transference of the eigenvalue 

branches depending on the mass ratio, the struc- 

tural damping of the pipe, and the elastic foun- 

dation parameters is thoroughly explained. Also, 

critical mass ratios of fluid-conveying pipes with 

elastic foundation parameters for the transference 

are determined for both with and without struc- 

tural damping cases. 

2. Analysis  and M a t h e m a t i c a l  

Formulation 

2.1 Mathematical model 
Consider a mathematical model of a fluid con- 

veying cantilevered pipe on elastic foundations 

as shown in Fig. 1. 

In Fig. 1, L is the total length of the pipe, k 

and v are the elastic foundation stiffness per 

unit length and the flow velocity, respectively, x 

and y are the axial coordinate and the vertical 
coordinate, respectively. 
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Fig. 1 

x 
///////////////////////////////////A 

Mathematical model of cantilevered pipe con- 
veying fluid with elastic foundations 

2.2 Governing equations of motion 
In order to derive governing equations for a 

small motion of the system as shown in Fig. 1, 
energy expressions can be given as follows. 

Eq. (6) can be rearranged in the following form. 

'~ t ay ay Oy Oy 

, & & Oy Oy 
-E I( o~)6(fffix~ )+mzv(ff~)d(ff[) 

ay Oy & & 

' ,  ay Oy 
- £  [m, vl(ff[)+v(~)}x=fiy]dt=O 

(7) 

For simplicity, let us here introduce the following 

dimensionless parameters : 

~ m~ 3y 2 me z Oy ay ~ 
T=fo [ ~ - ( ~ - ) + ~ - { v  + ( ~ - + v ~ - ) } ] d x  (1) 

Wc fL myv z [ 0 3 : \ 2  
=J0 T ~ )  ax (2) 

L E I  32Y 2 1 L 2 
(3) 

/ ~ay O~y 
fo /o~X Ot ) (4) $ W ~ = -  E I 

F a y _  ,93,1 
3 W ~ c = - m e v  L at -t-V Ox-Jx=tSY (5) 

where, T is the total kinetic energy of the sys- 
tem ; W~, the work done by the conservative com- 
ponent of the fluid force; U, the elastic poten- 
tial energy of the pipe; c~W~, the virtual work 
done by internal damping; 8Wnc, the virtual 
work done by non-conservative component of 
the fluid force. Also, Elmeans  the bending rigi- 

dity of the pipe. The pipe is assumed to be a 
viscoelastic material with the viscous resistance 

coefficient E*. 
In Eqs. (1) ~ (5), mp means the pipe mass per 

unit length; me, the fluid mass per unit length; 
y(x ,  t) ,  the transverse displacement of the pipe 

at position x. 
Substituting Eqs. (1 )~  (5) into the extended 

Hamilton's principle yields 

S f ; ~ ( T + W ~ - U ) d t  

+ S~' ( SW~+ 3W.~) dt=O 
(6) 

~ e = ~ ,  V = ~ - ,  r =  ms+rap 

ix kL  4 me 
= E I '  t~= m e + m p '  

E* _ ms 
m s +  m~ ' 

(8) 

where, e and 7] are the dimensionless axial and 

vertical coordinate, respectively, r ;  the dimen- 
sionless time, K ;  the elastic foundation para- 
meter, fl;  the mass ratio, 9'; the dimensionless 
structural damping coefficient, and u ; the dimen- 

sionless flow velocity. 
Substituting Eq. (8) into Eq. (7) leads to 

(9) 

2.3 Application of finite element method 
In order to obtain the numerical solutions for 

Eq. (91, the pipe structure is divided into Nfinite 

elements as shown in Fig. 2. 
Now, introducing the following local coordi- 

nate to Eq. (9) 

~ = N ~ - i +  1 (Og ~'~ 1) (10) 

the following discretized equation is obtained. 

f 
r 2 F N  f l  1 

-N'v~3V~ ~- yN'v~!~ ~V~-K~('~V ('~ }d~" (11) 
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0 1 2 i - I  i N - I  N 

Fig. 2 Finite element model of the pipe 

Now, the dimensionless displacement function 

z/(~', r) can be assumed as follows: 

~'~(~', r)=f"~(~).q(°(r) (12) 
where, f (~') means a shape function vector, and 

q ( r )  is a nodal displacement vector. 

Substituting Eq. (12) into Eq. (11) leads to the 

following standard matrix form. 

[ M ] { q , ~ } + [ C ] { q ~ } + [ K ] { q } = O  (13) 

where, [M] is a global mass matrix, [C]  depicts 

a global damping matrix, and [K] means a glob- 

al stiffness matrix. 

2.4 Stability criteria 
The displacement vector q ( r )  in Eq. (13) can 

be assumed to be the following form. 

{ q (r) } = { X }exp (/lr) (14) 

Then, Eq. (13) can be expressed as standard ci- 

genvalue problem. 

/I[I]{Z}= [A]{Z} (15) 
where, 

(16) 
{A}=[ [o] [I] ] 

- EM]-I [K] - -  [M] -~ [C] 

In general, the system with damping has the com- 

plex characteristic roots (,t~=O~-----jwj, j = , / ~ ] - ) .  

The stability of the system is determined by 

the sign of real part 0"5 of the characteristic 

roots, A~. 
If ~ is negative, the system is stable. If o'j is 

positive, the system is unstable. Generally spea- 
king, there are two different unstable types (di- 

vergence and flutter) depending on the value of 

a)j. However, it is noted that only the flutter type 
instability takes place in the present cantilevered 

pipe system. 

If crj is zero, the system is critical. The con- 

figurations of stationary oscillations of the fluid- 

conveying pipe on elastic foundations at the criti- 

cal flow velocity Ucr can be drawn by the follow- 

ing procedures. 

2.5 Flutter mode shapes 
If the characteristic root of the j - t h  branch is 

assumed to cross the imaginary axis at 

/~= +- j ( o)j) cr (17) 

where, dimensionless flow velocity u takes Ur. 

Substitution of Eq. (17) into Eq. (14) gives 

{q(r)}={lXj[}exp( j (co~)crr)  (18) 

The critical flutter configurations for j - t h  eigen- 

vector can be represented in the form. 

{q ( r ) }={ IX j [ }cos ( (W~)crr+¢ j )  (19) 

where, the phase angle Cj is given by 

Ira{X j} (20) 
tan ¢~-- Re { X i } 

3. N u m e r i c a l  R e s u l t s  a n d  D i s c u s s i o n  

Numerical analyses for the fluid conveying 

cantilevered pipe on elastic foundations were con- 

ducted by employing the finite element method. 

3.1 Effect of elastic foundations and struc- 
tural damping 

Figures 3 and 4 show the dimensionless critical 

flow velocity Uer for the onset of instability as 

a function of mass ratio fl for several values of 

the elastic foundation parameter K,  without 
and with structural damping, respectively. In 

ease of no structural damping as shown in Fig. 3, 

the elastic foundation parameter has a stabi- 
lizing effect as noted in References (Becker, 1979 ; 

Doare et al., 2002). In Fig. 4 with structural dam- 

ping, the elastic foundation parameter also in- 
creases the critical flow velocity. Therefore, one 

can recognize that elastic foundation parameter 

increases the critical flow velocity regardless of 

existence of structural damping, and the critical 

flow velocity strongly depends on the mass ratio 
#. 
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In order to investigate the effect of  structural 

damping on the stability of  f luid-conveying pipe 

50 

on elastic foundations, it is necessary to represent 

the (/~, u) plane as plotted in Figs. 5 and 6. 

Figures 5 and show the critical flow velocity and 

the stable or unstable regions depending on the 
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structural damping and the elastic foundation for 

various mass ratios 8. 

In Fig. 5, when K ~  103, the destabilizing effect 

of the structural damping strongly appears with 

increasing K for a large value of the mass ratio 

ft. In case of K = 1 0  z, the structural damping 

decreases the critical flow velocity in the ranges 
of 0 .63<f l<  1, approximately. When K---- 103, the 

structural damping has a destabilizing effect for 

0.6_<fl< 1. 

When K-<103, the structural damping has, 

however, negligible effect on the critical flow 

velocity for about 8<0.6 .  

Figure 6 represents the (8, u) plane for K 2  

5 × 10 s. In this case, the structural damping in- 

creases or decreases the critical flow velocity in 

front or in the rear of the special value of/3. 

For small values of/3, in contrast to Fig. 5, the 

structural damping has a stabilizing effect. For 
large values of fl, however, the structural dam- 

ping decreases the critical flow velocity. 

3.2 Eigenvalue branches and transference  

of  two branches to f lutter 

Figure 7(a) shows the behavior of the first 
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Argand diagrams of the four lowest eigen- 
values of the cantilevered pipes conveying 
fluid for/7=0.300 (~'=0.0, K=I00)  

three eigenvalue branches for the mass ratio /~= 

0.30 and the elastic foundation parameter K =  

lift, with no structural damping. The horizontal 

axis represents the real part of eigenvalue/1, while 

the vertical axis represents the corresponding im- 

aginary part. The flutter limit is determined in the 

root locus diagrams as the lowest flow velocity at 

which any branch crosses the imaginary axis. 
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As to the order of the branches, a branch that 

starts at the j - th  natural eigen-frequency for 

u = 0  is referred to here as the j - th  branch (Ref. 

Ryu et al., 2002). 

In Fig. 7(a), the flutter occurs on the second 

branch which starts at the second lowest fre- 

quency on the imaginary axis tbr the dimension- 

less flow velocity u = 0 .  

Figure 7(b) shows the behavior of the eigen- 

value branches for fl=0.305. In this figure, the 70 

flutter occurs on the third branch. Figure 7(c) 

shows the enlarged region that is enclosed by a 
60 

dotted line in Fig. 7(a). Some interesting seg- 

ments of the root loci for fl=0.301, 0.302 and 

0.303 are added in Fig. 7(c). The second and 50 

third eigenvalue meet at a point for a mass ratio 

between 0.301 and 0.302. The critical mass ratio ,-, 40 ~xt 
for the transference between the two branches is ~" 

thus approximately /~23:0.302. -- 30 

Figure 8(a) and 8 (b) show the behavior of the 

eigenvalue branches for and ~=0.576, in 0.580 20 

the case with structural damping. In this case 

flutter occurs on the second eigenvalue branch 
10 

for /~=0.576, (while on the first branch for /~= 

0.580.) Figure 8(c) shows the enlarged region 
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Argand diagrams of the tour lowest eigen- 
values of the cantilevered pipes conveying 
fluid for fl=0.576 (7=0.001, / ( =  100) 

enclosed by a dotted line in Fig. 8 (a). 

Some interesting segments of the root loci for 

/3=0.577, 0.578 and 0.579 are added. The critical 

mass ratio for the transference between the two 

branches is approximately /~21=0.579. 

Figures 9 and l0 show the stability map in the 

(/3, u) plane without and with structural dam- 

ping, respectively. These figures describe the rela- 
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tion between the dimensionless critical value Ucr 

and the critical mass ratio t~cr associated with 

the transference of the two unstable branches. 
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Fig. 10 Eigenvalue branches and quasi-modes de- 

pending on the mass ratio of the pipe r =  

0.001, K=I00  

In Fig. 9, the flutter occurs on the second ei- 

genvalue branch for 0<fl<0.302,  on the third 

branch for 0.302_</~<0.585, and on the first 

branch for 0.585_<fl< 1.0. 

In Fig. I0, the flutter occurs on the second 

eigenvalue branch for 0<fi<0.366,  on the third 

branch for 0.366_</~<0.545, on the second 

branch for 0.545~fl<0.579, and finally on the 

first branch for the region of 0.579</~< 1.0. 

3.3 F lut ter  conf igurat ion  

The flutter configurations in this paper can be 

obtained from the procedure described in section 

2.4. They are drawn at every 1/12 period of the 

stationary oscillation. The maximum amplitude 

of the unstable oscillation is taken as 1/10 of the 

pipe length. 

For the damped dynamical system of the pre- 
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Fig. 11 Unstable mode configurations r=0.0, 

K =  10o 
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sent paper, the first quasi-mode is defined as 

the oscillatory configuration without any moving 

nodes, the second with a single moving node, the 

third with two moving nodes, and so on (Ref. 

Ryu et al., 2002). 

Figure 11 depict the flutter configurations 

without structural damping for the mass ratios 

/3=0.214 and 0.215 when K=100 .  Figure l l (a)  

shows a single moving node, while Fig. 11 (b) 

shows two moving nodes. Therefore, in Figs. 11, 

the flutter configuration may be referred to as the 

second and the third quasi-mode, respectively. 

Figure 12 show the flutter configurations with 

structural damping for the mass ratios /3=0.216 

and 0.217 when K = 100. As mentioned for Figs. 

11 (a) and 11 (b), the flutter configurations in 

Figs. 12(a) and 12(b) may be referred to as the 

second and the third quasi-mode, respectively. 

4. Concluding Remarks 

Through the theory and numerical simula- 

tions for the fluid conveying cantilevered pipe 

on elastic foundations, the following conclusions 

are obtained : 

(1) The elastic foundation parameter K has 

a stabilizing effect regardless of  the existence of  

the structural damping. 

(2) For the ranges K-<10 a and 0 . 6 ~ f l < l . 0  

approximately, the structural damping has a de- 

stabilizing effect. 

(3) For  the range of K >  103 approximately, the 

structural damping has a stabilizing effect for a 

small value of mass ratio /3, and has a destabi- 

lizing effect for a large value of  mass ratio /3. 

i i i i 

I I 1 I 

0 0.2 0.4 0.6 0.8 
# 

(a) fi=0.216 

i i i i 

Fig. 12 

0.2 0.4 0.6 0.8 
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Unstable mode configurations 7=0.001, 
K = 100 
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